

Nonequilibrium thermodynamics at the microscale

Christopher Jarzynski

Department of Chemistry and Biochemistry and Institute for Physical Science and Technology

~1 m

Work and free energy: a macroscopic example ...

Irreversible process:

- $\lambda = A$
- $\lambda = B$

4. Repeat

... and a microscopic analogue

Thermodynamic cycles: stretching & unstretching stretching (forward, F): $A \rightarrow B$ unstretching (*reverse*, R) : A←B $W_R \ge -\Delta F$ $-W_R$ W_{F} rubber $W_{F} \ge \Delta F \ge -W_{R}$ band (macro) W [N·cm] ΔF

Kelvin-Planck statement of 2nd Law: $W_F + W_R \ge 0$

We perform more work during the forward half-cycle $(A \rightarrow B)$ than we recover during the reverse half-cycle $(A \leftarrow B)$.

(no free lunch)

Kelvin-Planck statement of 2nd Law: $\langle W \rangle_{F} + \langle W \rangle_{R} \ge 0$

We perform more work during the forward half-cycle $(A \rightarrow B)$ than we recover during the reverse half-cycle $(A \leftarrow B)$, *on average.*

(no free lunch... in the long run)

So what's new?

Fluctuations in W satisfy general and unexpected laws.

$$\left| V \right\rangle = e^{-\beta \Delta F}$$

$$\frac{\rho_F(+W)}{\rho_R(-W)} = \exp[\beta(W - \Delta F)]$$

So what?

Fluctuations in W satisfy general and unexpected laws.

$$\left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F} \qquad \qquad \frac{\rho_F(+W)}{\rho_R(-W)} = \exp[\beta(W - \Delta F)]$$

& others ... (Bustamante, Liphardt, & Ritort, Phys. Today, 2005)

• These results remain valid far from equilibrium.

 \rightarrow also true of entropy fluctuation theorems

- They relate nonequilibrium observables to equilibrium properties.
 - \rightarrow free energy estimation (simulation & experiment)
- They add to our understanding of the 2nd law of thermodynamics.
 - → Clausius inequality
 - → irreversibility, "arrow of time"

Irreversibility and the "arrow of time"

general observation:

Our everyday experience provides us with strong expectations regarding the order in which events ought to occur.

Macroscopic irreversibility

however:

Microscopic laws are time-reversal invariant.

Microscopic reversibility

Statistical resolution: a particular sequence of events might be **much** more likely than the reverse sequence.

(hence, arrow of time)

What about small systems?

A thought experiment / guessing game

Alice flips a coin.

<u>Heads</u>: She stretches a single molecule $(A \rightarrow B)$. <u>Tails</u>: She unstretches the molecule $(A \leftarrow B)$.

Then she shows Bob the force-extension curve:

Bob's task: guess the arrow of time !

Maximum likelihood estimation

F

R

λ (nm)

В

$$W = \int force \cdot d\lambda$$

$$\Delta F = F_B - F_A$$

$$L(F | W) = \text{likelihood of } A \rightarrow B, \text{ given } W$$

$$L(R | W) = \text{likelihood of } A \leftarrow B, \text{ given } W$$
... which is greater ?

if this were a macroscopic system ...

Analysis of likelihoods

Likelihood: degree to which an observation (W) supports a hypothesis (F/R).

law of likelihoods: $L(F | W) \propto P(W | F)$ $\rho_{\mathsf{F}}(\mathsf{W})$ $L(R | W) \propto P(W | R)$ $\rho_{\mathsf{R}}(\mathsf{-W})$

combine w/ Crooks's fluctuation theorem, normalization ...

These & other results refine our understanding of the 2nd law, as it applies to microscopic systems:

- violations of the Clausius inequality
- irreversibility and the "arrow of time"

Experimental single-molecule data

Collin et al, Nature 2005

